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Abstract—A facial expression model (FEM) is developed which
can synthesize various face shapes and albedo textures. The face
shape varies with individuals and expressions. FEM synthesizes
these shape variations by using a bilinear face model built from
the Face Warehouse Database. On the other hand, the generative
albedo texture is directly extracted from a neutral face model -
the Basel Face Model. In this paper, we elaborate the model
construction process and demonstrate its application in face
reconstruction and expression tracking.

I. INTRODUCTION

3D morphable face model (3DMM) was proposed in 1999

by Blanz and Vetter [1]. Its role is found to be more and

more important in face-related computer vision tasks due to

at least the following reasons. Firstly, morphable face model

can provide prior information that is essential to ill-posed

problems, such as 3D face reconstruction from a single color

image. Secondly, the analysis-by-synthesis method enabled

by this model can extract rich semantic information from

the image, such as the head pose, identity, expression, facial

landmark positions, the lighting condition, and so on. These

automatically-extracted semantic information can benefit ma-

chine learning algorithms, most of which nowadays still learn

from the limited manually-labelled data. Thirdly, as depth

sensors become cheap, compact and portable, 3D data will

be easily accessible, making the fitting process of the 3D

morphable model more computationally practical.

Generally, 3DMM is a linear model trained on registered

samples of human neural face scans. Each face sample is

taken as a vector consisting of x, y, z coordinates (shape)

or RGB values (albedo texture) of all vertices. Principal

component analysis is performed on all face samples to

derive the mean and the principal components, whose linear

combination can generate an arbitrary new face. The Basel

Face Model (BFM) [2] improved 3DMM by offering higher

accuracy of shape, texture and registration of the face samples.

The Global-to-Local Model (GLM) [3] made further progress

by incorporating multi-resolution analysis and local support

on high frequency components, which facilitates the model

fitting process. However, the three face models mentioned-

above can synthesize identity with neural expression only. To

reconstruct both the identity and various facial expressions,

blendshape model was used in [14]. To construct the user-

specific blendshapes, recent works applied deformation trans-

fer on the user’s neural expression mesh and then performed

refinement usually frame-by-frame on-the-fly [15]. A more

integral approach for identity and expression modelling was

the multilinear face model proposed in [4], which is adopted in

this paper and elaborated in Section II-A. Cao et al. presented

the FaceWarehouse Database (FWD) in [7]. Following [4] they

developed a bilinear face model using FWD’s around 7000

face samples generated from 150 individuals, and demonstrat-

ed its usage in several intriguing applications, such as facial

image manipulation and face component transfer. However,

since FWD dose not provide the albedo texture of each face

mesh, the bilinear face model in [4] can synthesize the face

shape only.

In this paper, we develop to our best knowledge the first

facial expression model that is able to not only synthesize face

shape variations due to different identities and expressions but

also generate different albedo textures. Specifically, we use

the Face Warehouse Database to construct the bilinear model

as in [4] for the face shape modelling. On the other hand,

the generative albedo texture is extracted from BFM, which

provides the albedo values for each of its vertices. By mesh

registration, correspondence to BFM is determined for each

vertex of the bilinear model, so that the albedo texture can

be transferred. Meanwhile, the region segmentation of BFM

(eyes, nose, mouth, and the rest of the face) can be transferred

similarly. We also manually segment the upper face region, 49

inner facial landmarks and 17 face boundary lines to facilitate

the model fitting in applications like rigid head pose tracking

[5] and face reconstruction. Furthermore, vertex decimation

is performed using the QSLIM method [6] so that the model

fitting can be adapted to different resolutions of the input data,

or implemented hierarchically to improve the fitting efficiency.

The rest of the paper is structured as follows. In Section

II, we present the model development methods, especially

the albedo texture transfer from BFM to the new model.

Section III illustrates the use of the developed model in

face reconstruction and face tracking. Conclusion is drawn in

Section IV.

II. THE FACE MODEL

A. Bilinear Shape Model

We use the FaceWarehouse Database [7] and adopt the

bilinear method of [4,7] to model the face shape deformation

due to identity and expression variations. In general, all face

meshes of FWD are assembled into a third-order (3-mode)



Fig. 1. Flow chart of the registration to Basel Face Model.

data tensor T 1. The first mode contains vertex positions,

while the second and third modes correspond to the identity

and expression, respectively. The Higher-Order Singular Value

Decomposition (HOSVD) is applied to the data tensor T as

T = C ×2 Uid ×3 Uexp (1)

where C is the core tensor, operation ×n is the mode-n multi-

plication, Uid and Uexp are orthonormal matrices consisting of

the model-2 and mode-3 left singular vectors. As analyzed in

[17], most properties of the matrix SVD have a clear higher-

order counterpart in HOSVD, especially the approximation

property, i.e., the original tensor can be well approximated

by discarding the smallest singular values. Therefore, we have

Ť = Cr ×2 Ǔid ×3 Ǔexp (2)

where Cr, Ǔid and Ǔexp are the truncated versions of C, Uid

and Uexp, respectively. Ť is a well approximation (though not

best) of the original tensor T in a least-square sense. Cr is

called the reduced core tensor, and can be used to generate a

new face shape as given below

S = Cr ×2 αid ×3 βexp (3)

where αid and βexp are the identity and expression parameters,

whose dimensions are chosen to be 50 and 25, respectively,

leading to an average reconstruction error of about 0.25 mm

on FWD. The identity and expression parameters are assumed

to have a multivariate Gaussian distribution, of which the

mean (μα and μβ) and the standard deviation (σα and σβ) are

derived from matrices Ǔid and Ǔexp. The reduced core tensor

Cr together with the multivariate Gaussian distributions of the

parameters constitute our bilinear face shape model.

B. Generative Albedo Texture

The Basel Face Model (BFM) can synthesize a neutral

face with various albedo textures. As introduced in Section

I, the albedo texture is modelled using Principle Component

Analysis (PCA), i.e., each vertex of BFM is associated with

a 3 × 1 vector of mean RGB values and a 3 × M matrix

of principle components (M is the dimension of the texture

parameters), from which new albedo values can be generated.

In order to transfer this generative albedo texture to the bilinear

face model, we need to find the vertex correspondences

between these two models. Therefore, mesh registration is

1Tensors are higher-order equivalents of vectors (first-order) and matrices
(second-order). Refer to [17] for details.
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Fig. 2. From left to right (a) the overlay of the deformed mesh (red) and
the target mesh (white) in steps 1-3, and (b) the hot maps of fitting error
generated from steps 1-3.

performed in three steps, as shown in Fig. 1. The first step

is the landmark fitting. A rough registration is obtained by

tuning the identity parameters of the bilinear face model to

fit the 26 3-D landmarks (8, 4, 6, 8 points around eyes, nose,

mouth, and ears, respectively, which are manually chosen on

both models) as follows

min
R,t,α

∑

i∈Nl

||fi(R, t, α, μβ)− vi||2 + λ(α− μα)
�Qα(α− μα)

(4)

and

fi(R, t, α, β) = R× (Cr,i ×2 α×3 β) + t (5)

where Nl is the set of landmark indices, R and t represent

the rigid rotation and translation, α denotes the identity

parameters, μα and μβ denote the mean parameters for identity

and expression, respectively, vi is the 3-D position of the

ith landmark on BFM, Cr,i is a portion of the reduced

core tensor associated with the ith vertex, Qα is a diagonal

matrix which contains the reciprocal of the variance of each

identity parameter. The regularization term in (4) penalizes

deviation from the mean, with λ controlling the regularization

intensity. The optimization is implemented using MATLAB

with gradient-descent method.

The second step is the parametric fitting using dense corre-

sponding vertex pairs. The objective function is similar to (4),

with Nl replaced by a set of denser vertices, which are located

by the nearest neighbour method. A corresponding vertex pair

is rejected as outlier if the distance between the two vertices or

their difference in normal directions is larger than a pre-defined

threshold (3 mm). Finding correspondences and minimizing

the objective function are performed iteratively until the fitting

result converges. Finally, non-parametric fitting is performed

in the last step, where the Laplacian mesh deformation method

in [8] is adopted to further enhance the registration accuracy.

Fig. 2(a) shows the overlay of the deformed mesh (red)

and the target mesh (white) after step one (left), two (middle)

and three (right), respectively. It can be observed subjectively
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Fig. 3. (a) Mean texture. (b) Random identities, expressions and textures.

Fig. 4. For top to bottom and left to right: texture maps generated for the
mean, 1st, 2nd, and 3rd principle components, respectively.

that the registration accuracy improves from left to right. Fig.

2(b) uses the hot maps to visualize the fitting error. From left

to right, the hot maps are generated from step one, two, and

three, respectively. Notice that after the non-parametric fitting,

the fitting error for most vertices is close to 0 mm. The high

fitting errors such as those around the eyes are caused by

the topology differences between BFM and the bilinear face

model, specifically, there are two holes in the eyes region of

the bilinear face model while BFM is a disc-like mesh.

After the mesh registration, vertex correspondences are

determined by the nearest neighbour method, and the PCA-

based generative albedo of BFM is transferred to the bilinear

face model vertex-by-vertex. Fig. 3(a) shows the bilinear face

model with the mean albedo texture transferred from BFM.

Fig. 3(b) presents eight exemplar faces with random identities,

expressions and textures.

It should be noted that BFM has a much higher vertex

density, which is the reason we directly find correspondence

for each vertex of the bilinear model without interpolation. But

in other words, only part of the BFM texture is transferred

to the bilinear model. To preserve the BFM texture more

completely, UV unwrapping [11] is performed on BFM to

bijectively project each 3D vertex onto an 2D texture map.

A dense texture map is then generated by interpolation. For

the mean texture and each of its principle components, a

texture map can be produced following this process. Fig. 4

shows the texture maps generated for the mean and the first

three principle components. Using these texture maps and

UV coordinates which can be derived from the above mesh

registration procedure, faces with more detailed textures can

be synthesized.

Fig. 5. Binary and weighted segmentations transferred from BFM.

Fig. 6. From left to right: the original model with 11K vertices, down-sampled
models with 8K, 4K, and 2K vertices, respectively.

C. Semantic Segmentation and Vertex Decimation

Besides the texture, BFM’s segmentation information can

also be transferred to the bilinear model after the mesh

registration, as shown in Fig. 5, which is indispensable for

segment-based face model fitting. We also manually mark the

upper face region (excluding the mouth and jaw) for rigid

head pose tracking [5], 49 inner landmarks and 17 boundary

lines [9] to facilitate the landmark-based face reconstruction.

Furthermore, vertex decimation is performed using the QSLIM

method [6], as shown in Fig. 6. These down-sampled models

can be used to improve the model fitting efficiency, by using

the sparser model to suit the low-resolution input or provide

the rough initialization result for the further refinement.

III. APPLICATIONS

We developed two applications, i.e., face reconstruction

(Section III-A) and expression tracking (Section III-B), to

demonstrate the usability of the textured bilinear model. Lim-

ited by the paper length, a brief description on the implemen-

tation is given blow.

A. Face Reconstruction

In face reconstruction, the model parameters for identity,

expression, and texture are determined by fitting an input

frame captured by Kinect v1. Specifically, we use 2-D fa-

cial landmarks ([12,13]) and the depth map to initialize the

identity and expression parameters by minimizing an objective

function similar to (4), which consists of two data terms

measuring total distances of corresponding 2-D landmarks and

3-D vertices, respectively, and two regularization terms for

identity and expression parameters. Then, the lighting con-

dition is estimated using 1st order spherical harmonics [16],

and the texture parameters are determined under this lighting

condition by fitting the input color image pixel-wise. Finally,

identity and expression parameters are further refined by fitting

the color image with the fixed albedo texture. Fig. 7 shows



Fig. 7. Face reconstruction examples.

Fig. 8. Comparison of face reconstruction results between using generative
albedo texture (right) and not (middle).

several examples of the reconstruction results. Notice that

using the textured bilinear model we can fit not only the neutral

face but also various expressions with personalized textures.

Fig. 8 illustrates the effectiveness of using the generative

albedo texture in face reconstruction. Compared with using

the landmarks and depth map only (Fig. 8 middle), integrating

the albedo texture can improve the fitting accuracy around the

eyes and face boundary (Fig. 8 right). Similar improvements

can be commonly observed in other images.

B. Expression Tracking

In expression tracking, a similar procedure is performed on

each input frame, i.e., which fits landmarks and depth values

firstly and the color values next, by tuning the expression

parameters with the fixed identity, albedo texture, and frame-

wisely-estimated lighting condition. (The identity and texture

parameters are determined in the first input frame using the

face reconstruction algorithm introduced above.) A exemplar

tracking result can be seen from the project website [10].

Notice that the synthesized faces can well represent the input.

Further improvement can be made by using multiple frames

for the identity and texture reconstruction, and considering

temporal smoothness of the expression change.

IV. CONCLUSION

By incorporating merits from the bilinear face model [4,7]

and the Basel Face Model [2], a facial expression model is

developed which can synthesize face variations caused by

three factors: identity, expression, and albedo texture. To our

best knowledge, it is the first face model that combines all

three factors together. In the future work, we plan to make

further improvements to the current model by incorporating

multi-resolution analysis, local-supports [3], details synthesis

(e.g., wrinkles, expression lines) ability, and eyeball/inner-

mouth synthesis ability.
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