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Abstract—In this paper, we propose a robust method for face
reconstruction using a single color image. A 3D morphable
model is used to reconstruct a smooth 3D face shape. To find
the correspondence between model vertices and image pixels,
landmarks are updated using SIFT flow which is illumination
and rotation invariant. To reconstruct more detailed information,
depth values are refined using a shape from shading method
which approximates lighting condition by spherical harmonics.
We test the proposed method on a set of real world images and
compare reconstructed results with depth maps captured by a
depth camera. The average error is around 3.3 mm.

I. INTRODUCTION

3D face reconstruction has been widely used in face recog-
nition [1] [2] and face tracking [3]. It also plays an important
role in augmented reality, virtual reality, 3D printing and etc.
Accurate face reconstruction requires information of shape,
texture, illumination and camera property. Thus recovering a
3D face is ill posed and unconstrained when only a single color
image is available. Under this circumstance, prior information
and assumption are essential. Blanz and Vetter [4] [5] fitted
a 3D morphable model (3DMM) based on correspondences
using optical flow between the reconstructed face and the
input image. This method could reconstruct faithful human
faces but is highly computationally expensive because of
the non-linear optimization. Romdhani et al. [6] proposed
a linear approach to compute an incremental update to the
shape and texture parameters given dense measurements of
residual errors from optical flow. Besides optical flow, there are
many other methods to find correspondences [7]. Moghaddam
et al. [8] used silhouettes computed from a large number
of input images. Since pixel intensities of a face image
can be dramatically influenced by expression, occlusion and
complicated illumination, model fitting methods are restricted
by these variations. Zhu and Yi [9] proposed a robust method
using multi-feature framework which included SIFT feature,
pixel intensity and contours. Since SIFT feature is proved
to be invariant to uniform scaling, orientation, and partially
invariant to affine distortion and illumination changes, it can
locate the facial components successfully [10]. However, face
external boundary was not considered in this method, which
may have significant influence to the reconstruction quality.
Keypoint is another popular feature which provides sparse
correspondence [11]. However, this sparse correspondence was
manually marked which may cause matching error. Therefore
we combine face boundary landmarks and SIFT features, to

improve the model fitting result on both inner facial compo-
nents and face external boundary.

Moreover, the shape description ability of 3DMM is limited.
High frequency details such as wrinkles and mole cannot be
synthesized by 3DMM. This restriction of model itself can
be rectified by shape from shading methods. Pixel intensities
from the input image provide information about the luminance,
albedo and shape. Basri and Zhang [12] [13] proposed a
method to estimate the illumination of images using spher-
ical harmonics approximation. The spherical harmonics are
related to normals which are gradients of depth values. Some
researchers used the average shape obtained from prerequisite
images as a reference shape, and reconstructed a detailed
face from a single image using spherical harmonics [3]. The
average shape highly relies on the collected images, e.g., if the
collected images were occluded by glasses, the average shape
will show artifacts of glasses. Raw depth captured by a depth
camera was used as a reference shape in [14]. Besides, [15]
[16] proposed using depth from 3DMM as a reference shape,
which inspired our work.

In this paper, we propose a robust method which combines
3D morphable model and shape from shading to reconstruct a
highly detailed 3D face. The proposed method combines facial
landmarks and SIFT flow to fit the 3DMM. To improve the
fitting accuracy, we use normals of landmarks in the objective
function. Then based on the reconstructed 3D face, depth
values are refined to recover details using spherical harmonics
approximation.

This paper is organized as follows: In Section II, we briefly
introduce the 3DMM and spherical harmonics approximation.
In Section III, the proposed method is explained in details
which include the model fitting and shape from shading. In
Section IV, we present experimental results and give both
subjective and objective evaluations. The final section draws
the conclusion and discusses the future work.

II. RELATED WORK

A. 3D morphable model

A 3DMM is constructed from ω registered 3D faces with
d vertices. Each face is represented by a shape vector S =
[x1, y1, z1, ..., xd, yd, zd] in x, y, z coordinates and a texture
vector T = [r1, g1, b1, ..., rd, gd, bd] in RGB channels. By
applying PCA to ω face samples, principal components can
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be extracted. Then new shape and texture can be synthesized
as a linear combination of principal components.

S(α) = µs + Usα T (β) = µt + Utβ (1)

where Us and Ut are principal components for shape and
texture model, α = [α1, α2, ..., αω] and β = [β1, β2, ..., βω]
are parameters for Us and Ut, µs and µt are the mean shape
and texture.

B. Shape from shading

Besides the correspondences between 3DMM and the input
image, pixel intensities are also used to estimate depth values.
Human face is assumed to be a Lambertian surface and the lu-
minance is uniform for all points belonging to the surface. The
Lambertian surface only has low frequency reflectance. We
use spherical harmonics to approximate the lighting condition.
The spherical harmonics are a set of functions that form an
orthogonal basis for the set of all square integrable functions
defined on the unit sphere. They are analogue on the sphere to
the Fourier basis on the line or circle. Under this circumstance,
the reflectance of a image could be approximated as:

R(x, y) ≈
J∑
j=0

j∑
v=−j

ljvYjv(x, y) (2)

where j is the order of spherical harmonics and v represents
different components of jth spherical harmonic function,
R(x, y) is the reflectance at point (x, y), ljv are coefficients
of lighting and Yjv(x, y) are the surface spherical harmonic
functions evaluated at the surface normal. To reduce the
complexity, we use the first order spherical harmonic functions
with

Y (x, y) = (1, nx, ny, nz) (3)

Then pixel intensity from a face image is represented by:

I(x, y) = ρ(x, y)× l × Y (x, y) (4)

where ρ(x, y) is the albedo, i.e, the ratio of reflection to
incidence, Y (x, y) denotes the surface spherical harmonic
functions and l represents coefficients of Y (x, y).

III. METHOD

The proposed method consists of two main stages: 3DMM
fitting and refinement of depth values. In the model fitting
stage, key points of 3DMM are manually marked and land-
marks are detected from the input image. Shape parameters are
estimated by minimizing the sum of squared distances between
vertex projections and landmarks. Landmark positions are
updated using SIFT flow computed from the reconstructed face
and the input image. Then shape parameters are updated by
fitting 3DMM to the updated landmarks. This process iterates
until its convergence. Using depth values rendered from the
reconstructed face, lighting condition and albedo map are
estimated and in turn depth values are refined accordingly.
Fig. 1 displays these main steps in the flow chat.
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Fig. 1. Flow chart of the proposed method

A. Model fitting

In the model fitting stage, we estimate shape parameters
α = [α1, α2, .., αm] for shape reconstruction. Landmarks are
detected in the input image using the algorithms in [17] [18]
which then are updated using SIFT flow computed from the
rendered image and the input image. In the cost function,
we take normal of landmarks into consideration. The shape
parameters, transformation and focal length can be estimated
by minimizing the sum of squared distances between vertex
projections and detected landmarks:

min
T,R,f,α

∑
i

‖pi(T,R, f, α)− li‖2 + λαTQα (5)

where li is the 2D position of the ith landmark, T,R, f and α
are the translation vector, rotation matrix, focal length and face
model parameter vector, respectively. Q is a diagonal matrix
whose elements contain the reciprocal of variances for the
principle components. This regularization term prevents the
reconstructed shape drifting too far away from the mean face
shape. pi(·) calculates the perspective projection of the ith

vertex of the face model

pi(T,R, f, α) = πf (R(µi + Uiα) + T ) (6)

where πf (·) calculates the perspective projection which in-
volves the focal length f .

The detailed model fitting process consists of two steps: reg-
istration and multi-PCA modeling, which will be introduced
below.

1) Registration: We manually mark corresponding vertices
on 3DMM by observation which then is applicable for any
input face image. Notice that the corresponding vertices on
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(a) (b)

(c) (d)
Fig. 2. Comparison between two methods. Green points are the detected
landmarks and red points are vertex projections. (a) and (c): Fitting results
without using line normals; (b) and (d): Fitting result using normals.

the face boundary may change as the shape and pose change.
To ensure that corresponding vertices are visible, we mark a
set of points as the potential boundary vertices as in [19] .
When shape parameters and the pose change, corresponding
vertices are updated by checking their normals.

Furthermore, we found that the boundary landmarks de-
tected by [18] is not consistent across different head poses,
since there is no clear semantic correspondences for landmarks
on the face boundary. To solve this problem, we add a normal
projection term in the objective function:

min
T,R,f,α

∑
i

〈ni, (pi(T,R, f, α)− li)〉2 + λαTQα (7)

where ni is the normal of the line connecting the (i+ 1)
th and

(i− 1)
th landmarks as shown in Fig. 2a. The resulting effect

is that the vertex projections do not necessarily fall onto the
exact location of the landmarks. Instead, they can slide along
the face boundary without increasing the matching error. Fig.
2 shows the fitting results using objective functions eq. (5) and
eq. (7). By comparison between Fig. 2c and Fig. 2d, it can be
observed that using normals can generate better fitting results,
especially for the face boundary.

2) Multi-PCA modeling: As the shape of the human head
is complex and exhibits a large variation among individuals,
single PCA cannot yield a sufficiently adaptive model [20].

Fig. 3. Distance between landmarks and vertex projections. X-axis represents
different input images and the unit of Y-axis is pixel.

Therefore, we segment the 3DMM into four regions: nose,
eyes, mouth and the rest. The transformation parameters R
and T are fixed, and each region rk is assigned with specific
shape parameters and associated with a set of landmarks. The
objective function could be rewritten as:

min
αk

∑
i∈rk

〈ni, (pi(T,R, f, αk)− li)〉2 + λαTkQαk (8)

We solve αk = [αk1, αk2, ..., αkω] separately and recon-
struct four different faces using αk. Here ω is the dimension
of principal components. For each reconstructed face, we
have a weight vector which assigns larger weight to vertices
belonging to its associated region. The reconstructed face is a
blended shape using four PCA parameters:

4∑
k=1

wk(µs + Usαk) (9)

where Us and µs are the PCA basis and the mean shape of
3DMM, and wk = [wk1, wk2, ..., wk3d] is the weight vector
for region rk.

Fig. 3 shows the average distance between landmarks and
vertex projections for different input images. The results show
that using multi-PCA has consistent improvement. The average
distance is reduced by 0.15 pixel.

B. SIFT flow alignment

We render the reconstructed shape with the mean texture.
By comparison between the rendered image and the input
image, small displacements can be observed between these
two images. By minimizing the displacement map, the re-
constructed face could become realistic. SIFT features are
local and invariant to the image scale and rotation. They
are also robust to changes in illumination, noise, and minor
changes in viewpoint. Therefore, we use SIFT flow to refine
the correspondence between two images.

By extracting dense SIFT features and compute the SIFT
flow, the displacement map can be generated. Considering the
ith key point, the location of its projection is (x, y) and the
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(a) (b)
Fig. 4. Comparison between Landmarks.(a) key points on 3DMM. (b) Red:
updated landmarks, Blue: detected landmarks.

displacement vector is u. Then the position of the ith landmark
should be replaced by (x, y)+u. We show updated landmarks
and detected landmarks in Fig. 4. Compared with vertices of
3DMM in Fig. 4a, landmarks updated using SIFT flow has
more accurate correspondence. Taking vertices of the mouth
upper lip as an example, the updated landmarks are exactly at
the mouth boundary, while the detected landmarks are slightly
above the lips.

C. Depth refinement

3DMM only provides a smooth face shape without details
like wrinkles and mole. Based on the reconstructed face from
3DMM, we use spherical harmonics approximation to estimate
the lighting condition and refine depth values.

1) Lighting condition and albedo estimation: We firstly
assume that ρ(x, y) = 1 for all points from the image, and
normal map from the reconstructed face is used as a reference.
Then the lighting coefficients are estimated by solving:

I(x, y) = l × Y (x, y) (10)

where Y (x, y) = (1, nx, ny, nz), and nx, ny, nz are three
components of the normal vector. Eq. (10) can be solved by
using the normal equation.

After calculating the lighting coefficients, we estimate the
albedo map by solving the following linear equation:

I(x, y) = ρ(x, y)× lest × Y (x, y) (11)

2) Shading-based depth refinement: Based on the estimated
lighting condition and albedo map, we estimate the depth map
by replacing Y (x, y) in eq. (11) with depth value z(x, y).

The normal vector can be represented by depth values:

(nx, ny, nz) =
1

N
(
∂z

∂y
,
∂z

∂x
,−1) (12)

where N is a normalization factor:

N =

√
(
∂z

∂x
)
2

+ (
∂z

∂y
)
2

+ 1 (13)

and
∂z

∂x
= z(x+ 1, y)− z(x, y) ∂z

∂y
= z(x, y + 1)− z(x, y)

(14)

(a) (b) (c)
Fig. 5. Model fitting results. (a) Input images. (b)Initialization of pose and
shape. (c) Final fitting results.

By replacing (nx, ny, nz) in eq. (12) with eqs. (13) and
(14), and substituting them into eq. (11), we obtain a least
square problem which can be solved analytically. Since pixel
intensities are used, details of the human face as shown in the
experimental section can be recovered.

IV. EXPERIMENTS

For 3DMM, we used the Basel Face Model [21] which is
derived from 3D face scans of 100 male and 100 female
subjects. It is PCA-based and can morph to a wide range
of shapes and textures by adapting parameters. To reduce
the complexity, we used the first 30 principal components to
reconstruct the 3D shape. The proposed method was tested on
real life images. We collected 17 human faces under different
poses and lighting conditions with 640∗480 RGB images. For
each image, we detected 49 inner landmarks and 17 boundary
landmarks to initialize the 3D shape. Then the inner landmarks
were updated by SIFT flow. Since detected inner landmarks
[17] do not provide landmarks of nose wings, we added 4
landmarks of the nose boundary during the alignment.

In the model fitting stage, pose and shape parameters are
initialized using the 66 landmarks, where single PCA model
is used. Then the initialized 3D face with the mean texture is
projected into a 2D image. We estimate the lighting condition
and apply it to render the color image. By computing the
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TABLE I
AVERAGE DISTANCE WITH DEPTH MAPS CAPTURED BY STRUCTURE SENSOR(UNIT:MM)

Faces 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 avg

InitDep1 4.61 4.55 3.48 4.06 4.12 4.88 4.20 2.27 2.87 3.42 3.95 3.27 5.09 5.28 3.86 3.99 3.94 3.99

InitDepN2 4.08 4.06 2.97 3.76 3.33 4.21 4.14 2.28 2.38 3.13 3.32 3.24 4.43 4.80 3.07 3.21 3.72 3.54

RenderDep3 3.32 4.11 2.92 3.39 3.56 4.25 3.34 2.94 2.27 3.36 3.17 2.88 3.06 4.19 3.50 2.86 3.49 3.33

RefineDep4 3.37 4.01 2.88 3.43 3.47 4.21 3.29 2.88 2.26 3.34 3.13 2.76 3.05 4.26 3.37 2.84 3.42 3.29
1 Depth values from initialized model. 2 Depth values from initialized mode using normals. 3 Depth values from final fitted model. 4 Depth values refined

using shape from shading method.

SIFT flow between the rendered image and the input image,
the projection of vertices can be refined, and the landmarks
can be updated. The 3DMM is divided into 4 segments and
fitted to the updated landmarks. For each segment, one 3D
face is generated, and they are blended using weight vectors
as introduced in Section III.A. To improve the performance,
five iterations are performed.

Fig. 5 shows the model fitting results. The initialization
could provide a preliminary result but have flaws in certain
face attributes as shown in Fig. 5b. By comparison between
Fig. 5b and Fig. 5c, it can be observed that Fig. 5c has
improvements over eyes, nose and mouth. We marked face at-
tributes which have obvious improvement with red rectangles.
Since depth values around the eyes vary moderately, the shape
of the eye can be further modified in the depth refinement
stage.

We compare our method with the SSF algorithm in [9].
We test images rendered from 10 face scans under 3 pose
conditions (yaw rotations from -15 degree to +15 degree) and
3 lighting conditions (different directions and strengths). We
evaluate the precision of the shape fitting using Root Mean
Square Error (RMSE) as in [9]. Fig 7 shows the RMSE for
all face points (excluding ears and neck). We can see that the
average error is around 3.5 mm, while the average error of
SSF is around 6.5 mm.

The refined depth values are also compared with depth maps
captured by a depth camera (Structure Sensor), which has
errors from 0.5 mm to 30 mm at a range from 400 mm to
3000 mm. The average distance is computed by applying rigid
transformation to the refined depth values and comparison with
raw depth captured by the depth camera. Table I and Fig.
6 shows the average distance per pixel with the raw depth.
The distance between human face and the depth camera is
about 500 mm while the average error is around 3.3 mm.
The initial depth map is generated from the initialized model
without using normal direction and it is reduced by 0.7
mm using the proposed method. Although the refined depth
reduced the average error slightly compared with depth maps
generated from the reconstructed face, the subjective quality
improvement is significant as shown in Fig. 8.

In Fig. 8, we present the normal map of the refined depth.
The details can be reconstructed well especially for the eye
shape and some obvious mole on the face. We also present the
3D views of the reconstructed face. The subjective quality of
the results is substantially improved over the eyes and mouth.

Fig. 6. Comparison with depth maps captured by Structure Sensor. X-axis
represents different face images.

Fig. 7. RMSE of the whole face over the yaw rotations (−15◦, 0◦,+15◦)
under different lighting conditions

More details appear in the final result compared to the ones
shown in Fig. 5.

V. CONCLUSION

In this paper, a novel and accurate face reconstruction algo-
rithm using SIFT flow and spherical harmonic approximation
was proposed. We detected inner landmarks and boundary
landmarks, and updated them using SIFT flow. Then the depth
map rendered from the reconstructed face was refined by
shape from shading method which uses spherical harmonic
approximation to estimate the lighting condition. We tested
our algorithm using images captured by color camera with
different poses and illuminations. The obtained results showed
that the subjective quality of the reconstruction results are
satisfying. Furthermore, our results were compared with data
captured from a depth camera, which showed that the obtained
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(a) (b) (c)
Fig. 8. Reconstruction results of the proposed method. (a) input images. (b)
normal maps of final results. (c) 3D views of the reconstructed face.

results using a single color image have a reconstruction error
around 3.3 mm on average. Our future work will involve facial
expression and texture model to make the algorithm more
generally applicable and the reconstructed face more realistic.
Moreover, ground truth obtained using devices with higher
accuracy will be incorporated in the future work.
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